
Creating a Django project
We’ve got our virtualenv set up inside our bugger directory and we’ve got Django installed inside our virtualenv.
Before we actually create a proper Django project however, we’ll first have a look at what makes a Django
project.

In its purest form, a Django project is simply one or more modules, glued together using the project settings. In
most — if not all — cases you’ll write your own Python modules to add features to the project. Those modules
are called “apps” in Django.

In Java with Maven

Let’s compare this to a typical “pure” Java web application you can run in Tomcat or Jetty. Our project layout
might contain the following:

pom.xml

src/main/java/com/acme/auth

src/main/java/com/acme/issues

src/main/webapp/WEB-INF/web.xml

src/test/java/com/acme/auth

src/test/java/com/acme/issues

Our Maven pom file defines our project structure with the dependencies of the application — things like Apache
Commons libraries or Spring — and provides us with an easy way to run tests or create a WAR file from the
sources.

In the src/main/java directory you’ll add your Java sources, typically organized in packages like
com.acme.auth and com.acme.issues according to the functionality the Java classes provide.

The src/main/webapp directory contains a web.xml file with the web app configuration and other web-related
resources such as JSP, JavaScript, HTML and CSS files.

The src/test/java directory contains our tests to verify everything does what it’s supposed to do.

If you’d like to reuse the com.acme.auth package in other projects, you’d move that package to a separate
module or project resulting in a JAR file and then add that JAR as a dependency of your web app.

With Django

Assume you’re porting this application to Django. Just like you organize related classes in packages in Java,
you’ll organize related code in Django in “apps”; in this case those two apps are called “auth” and “issues”. The
web app configuration you’d find in web.xml (or in a separate properties file, JNDI, doesn’t matter really) is
typically specified in at least two project-specific files: settings.py (database settings, caching, timezone,…)
and urls.py (only the URL mapping, similar to servlet mappings).

Finally, most of the tools provided by Maven are either not needed, provided by virtualenv and pip or provided
by Django’s manage.py or django-admin.py scripts.

Don’t worry if this all sounds a bit complicated. We’re about to start a Django project and all pieces of the
puzzle will slowly start falling into place.

startproject

We’re ready to start our project. When starting a Maven-powered project, you’d either copy an existing pom.xml
file or use a Maven archetype:

$ mvn archetype:generate -DgroupId=com.acme -DartifactId=bugger \

-DarchetypeArtifactId=maven-archetype-webapp

With Django, you use the startproject command like this:

(env) django-bugger $ django-admin.py startproject bugger

Note: we’re inside the django-bugger directory in our $PROJECTS dir and are using our virtualenv env.

Let’s have a look at what this command did.

(env) django-bugger $ tree -L 2

.

├── REQUIREMENTS

├── bugger

│ ├── bugger

│ └── manage.py

└── env

 ├── bin

 ├── include

 └── lib

6 directories, 2 files

startproject created a bugger directory to hold our apps and within that bugger directory is another
directory called bugger which is our main app.

Yes, that’s a lot of bugger directories and this will become confusing, so let’s lay down some ground rules:

$PROJECTS/django-bugger is our starting point. You’ll now understand why we didn’t call this directory bugger.
$PROJECTS/django-bugger/bugger is our Django project directory.
$PROJECTS/django-bugger/bugger/bugger is our main Django app.

Let’s move to our bugger project directory and see what’s going on.

https://docs.djangoproject.com/en/dev/ref/django-admin/#startproject-projectname-destination

(env) django-bugger $ cd bugger

(env) bugger $ tree -L 2

.

├── bugger

│ ├── __init__.py

│ ├── settings.py

│ ├── urls.py

│ └── wsgi.py

└── manage.py

1 directory, 5 files

As you can see above, our bugger app contains four Python files. The __init__.py file makes clear that the
bugger app directory is actually a Python module. It’s actually an empty file.

The settings.py file contains the Django configuration, urls.py contains our mapping of URLs to views and
wsgi.py is an entry point for deploying this Django web application in a WSGI-compatible app server. More
information on that will follow in later chapters.

In our bugger Django project we can find another file: manage.py. This is the entry point for commands issued
related to the current Django project. It’s actually nothing more than a way to invoke django-admin.py without
having to tell it where your project settings live. For the record: your settings are specified in settings.py,
which you can refer to as bugger.settings.

This means the following two commands are equivalent:

(env) bugger $ python manage.py startapp issues

or

(env) bugger $ django-admin.py startapp issues --settings=bugger.settings

If you were using Maven, you could, with some extra configuration, start the web application through Maven in
Jetty with this:

$ mvn jetty:run

Doing this in Django requires no extra configuration. Start a local dev server with the following:

(env) bugger $ python manage.py runserver

Validating models...

0 errors found

Django version 1.4, using settings 'bugger.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Open your browser and go to http://127.0.0.1:8000/ and you will be greeted by Django.

http://wiki.eclipse.org/Jetty/Feature/Jetty_Maven_Plugin
http://127.0.0.1:8000/

Ignore the instructions on this page for now and stop the server. First we’re going to define what our Bugger
application should do and examine how a Django application responds to HTTP requests.

If you’ve been reading all of this in one go, it might be time to go and have a cup of coffee, tea, scotch or any
other beverage of choice. Give it some time to settle and look back at what you have learned and achieved. You
already know how to define and install dependencies, how to easily create a new project and how to start the
web server! And you haven’t written a single line of code yet.

